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Abstract. The Kolmogorov equation, which is an exact relationship between the second-order
structure functionDLL (r) and the third-order structure functionDLLL (r), is applied to study
the relative scaling ofDLL (r) against−DLLL (r) according to the extended self-similarity (ESS)
method. It is found that the relative ESS scaling exponentS2 is greater than the real (or
theoretical) inertial range scaling exponentζ2 of DLL (r) in the case of normal scaling (ζ2 = 2/3)
as well as anomalous scaling (ζ2 = 0.7): S2 > 0.7 whenζ2 = 2/3 andS2 > 0.72 whenζ2 = 0.7.
Therefore, the experimental and numerical resultsS2 = 0.7 favours the Kolmogorov 2/3 law
(ζ2 = 2/3) rather than anomalous scaling (ζ2 = 0.7). Previously the resultsS2 = 0.7 were
interpreted as clear evidence of anomalous scaling(ζ2 = 0.7) based upon the assumption that
ζ2 = S2.

1. Introduction

The structure function of turbulence of ordern is 〈1unr 〉 or 〈|1ur |n〉, where〈· · ·〉 is the
statistical average and1ur is the longitudinal velocity difference across a distancer. In the
inertial range [1], we have the scaling〈1unr 〉 ∼ rζn, where ζn is the scaling exponent
of order n. Strictly speaking,ζn is defined for the idealized model of inertial range
corresponding to the asymptotic case of infinite Reynolds number [2], and is called the
real (or theoretical) inertial range scaling exponent in this paper. By the Kolmogorov 2/3
law [1], ζ2 = 2/3, the second-order structure functionDLL (r) scales asr2/3 in the inertial
range; but various intermittency models predict thatζ2 = 0.7 [1]. It is very difficult to
take accurate measurements to confirm whetherζ2 = 2/3 (normal scaling) orζ2 = 0.7
(anomalous scaling). Recently, Benziet al [3] proposed the extended self-similarity (ESS)
method to improve the accuracy of the experimental scaling exponents, in which they make a
log–log plot of the structure functions against the third-order structure function, and observe
an extended scaling range up to aboutr/η = 4 in the dissipation range, which is much wider
than that observed in the traditional plot againstr; hereη = (ν3/ε)1/4 is the Kolmogorov
scale. It is believed that the ESS method can determine accurately the scaling exponent
experimentally or numerically. The scaling exponent derived by the ESS method is denoted
by Sn and is called the ESS scaling exponent in this paper. Stolovitzky and Sreenivasan
[4] pointed out that the concept of ESS is valid for low-order structure functions, but is
questionable for high-order structure functions. In the case ofn = 2, by using experimental
data atRλ = 102–103, Benzi et al [3] obtain S2 = 0.7 over the ESS range 4< r/η < 103.
By assumingζ2 = S2, they reported that the resultS2 = 0.7 is clear evidence of anomalous
scaling (ζ2 = 0.7) ofDLL (r). Several different independent experiments give the same result
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that S2 = 0.7 (see figure 3 of [5]). Caoet al [6] use direct numerical simulation (DNS) of
Navier–Stokes turbulence to determine the ESS scaling exponentSn of low-order structure
functions, and obtainS2 = 0.7 in agreement with experiments. By assumingS2 = ζ2, they
conclude that the DNS result means unambiguously the anomalous scaling (ζ2 = 0.7) of
DLL (r).

In this paper, we make a thorough theoretical analysis of the relative scaling ofDLL (r)

versus−DLLL (r), whereDLLL (r) = 〈1u3
r 〉 is the third-order structure function. Our results

are:
(a) in the log–log plot ofDLL (r) against−DLLL (r), an approximate relative scaling law

is observed over the range 4< r/η < 103, which is the ESS range adopted by Benziet al
while they obtainS2 = 0.7;

(b) the local slope of the log–log plot is not constant and has a remarkable bump in the
ESS range, so that the relative scaling law is not valid in a strict sense;

(c) the ESS scaling exponentS2 is greater than the real inertial range scaling exponent
ζ2 for both normal scaling (ζ2 = 2/3) and anomalous scaling (ζ2 = 0.7), i.e. S2 > 0.7 for
ζ2 = 2/3, andS2 > 0.72 for ζ2 = 0.7.

The experimental and numerical resultsS2 = 0.7 have previously been interpreted as
clear evidence of anomalous scaling (ζ2 = 0.7) of DLL (r) based upon the assumption that
ζ2 = S2. In contrast, our results show that the dataS2 = 0.7 actually favour the Kolmogorov
2/3 law (ζ2 = 2/3) rather than anomalous scaling (ζ2 = 0.7).

2. Outline of methods

In the universal equilibrium range, we have the following exact relationship between the
second- and third-order structure functions [1]

DLLL (r) = −(4/5)εr + 6ν dDLL (r)/ dr (1)

which is the celebrated Kolmogorov equation. Hereε is the energy dissipation rate, andν
is the kinematic viscosity. When the second-order structure functionDLL (r) is known, the
third-order structure functionDLLL (r) is obtained from (1), and then we can calculate the
ESS scaling exponentS2 of DLL (r) by the ESS method.

DLL (r) is related to the three-dimensional (3D) and one-dimensional (1D) energy
spectrumE(k) andE1(k) (see Monin and Yaglom [1])

DLL (r) = 4
∫ ∞

0
E(k)[1/3+ cos(kr)/(kr)2− sin(kr)/(kr)3] dk (2)

DLL (r) = 2
∫ ∞

0
E1(k)[1− cos(kr)] dk. (3)

The longitudinal structure functionDLL (r) is related to the isotropic structure functionD(r)
[1, 7]

D(r) = 3DLL (r)+ r dDLL (r)/ dr (4a)

and

DLL (r) = r−3
∫ r

0
x2D(x) dx. (4b)

Although an exact expression forDLL (r) is not available at present, there are various
approximate models forE(k), E1(k) andD(r), based upon experimental, numerical and
theoretical works of more than half a century. By using these models and equations (2)–(4)
we can calculateDLL (r), and then calculateDLLL (r) by using (1). In the log–log plot of
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DLL (r) against−DLLL (r) we observe an approximate relative scaling law over the ESS
range adopted by Benziet al while they obtainS2 = 0.7. However, the local slope of the
log–log plot is not constant and has a remarkable bump in the ESS range; hence, the relative
scaling law is not valid in a strict sense. Finally, we calculate the ESS scaling exponentS2

of DLL (r) by the ESS method for both normal scaling (ζ2 = 2/3) and anomalous scaling
(ζ2 = 0.7).

3. Proof for typical models of the energy spectrum

First, we study the case of normal scaling (ζ2 = 2/3). In the universal equilibrium range,
we have [1]

E(k) = Koε2/3k−5/3F(k/kd) F (0) = 1 (5)

whereKo is the Kolmogorov constant andF(x) is a universal function ofx = k/kd . From
(5) and the energy dissipation relationship, we obtain

2Ko
∫ ∞

0
x1/3F(x) dx = 1. (6)

A simple model ofF(x) [1] is

F(x) = exp(−Cxn). (7)

There are three undetermined parametersKo, C andn in equations (5) and (7), but only
two of them are independent due to the constraint (6). Many efforts [1, 8] have been made
to estimate the value ofn: Kraichnan proposedn = 1, Pao suggestedn = 4/3, and the
theoretical analysis by Foiaset al shows thatn = 1 for the far dissipation range. As
n→∞, (7) with (6) become the instructive discrete model

F(x) = 1 if x < xc and F(x) = 0 if x > xc (8)

wherexc = (1.5Ko)−0.75. Whenn andKo are given andC in (7) is determined by (6),
then we can calculateDLL (r) by using (2), (5) and (7), and finally calculateDLLL (r) by (1).
In a log–log plot ofDLL (r) against−DLLL (r), a straight line fitting the result over the ESS
range is found by the least-squares method, and its slope is the ESS scaling exponentS2 of
DLL (r). The ESS range is 4< r/η < 103, which is the same as that adopted by Benziet al
[3] while they obtainS2 = 0.7. For illustration, figure 1 shows the log–log plot ofDLL (r)

against−DLLL (r) over the ESS range for Pao’s formula, and figure 2 shows its local slope

SL = d log(DLL (r))/d log(−DLLL (r))

over the range 0.1 < r/η < 106. Pao’s formula [8] is a special case of the model (7)
whenn = 4/3 andKo = 1.7, and from (6) we obtainC = 2.55. It is clear from figure 1
that we have an approximate relative scaling law over the ESS range. However, the local
slopeSL shown in figure 2 is not constant and has a remarkable bump in the ESS range
4< r/η < 103; hence, the relative scaling law is not valid in a strict sense. Figure 3 gives
the ESS scaling exponentS2 of the model (7) for 2> Ko > 1 and∞ > n > 1. The
Kolmogorov constantKo estimated by various methods [9, 10] scatters and is between 1
and 2. Figure 3 clearly shows that the ESS scaling exponentS2 is greater than the real
inertial range scaling exponentζ2 = 2/3 no matter what the parameters of the model (7)
are.

One might argue thatS2 being greater thanζ2 shown in figure 3 is just a disadvantage
of the simple model (7). The main drawback of this model (7) is that it neglects the bump
phenomenon. In the following we study several typical models which take into account the
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Figure 1. DLL (r) against−DLLL (r) over the ESS range 4< r/η < 103 for Pao’s formula,
Ko = 1.7, F(x) = exp(−2.55x4/3) (open circles); least-squares fit (full curve).

Figure 2. SL = d log(DLL (r))/d log(−DLLL (r)) againstr/η for Pao’s formula.

bump phenomenon, and show that their ESS scaling exponents are also greater than the real
inertial range scaling exponentζ2. The first bump model is the one proposed in [11]

F(x) = (1+ Bxm) exp(−Cxn) B > 0. (9)

If B = 0, (9) becomes (7). According to (7),F(x) is a monotonically decreasing function of
x. In contrast, according to the bump model (9) whereB > 0, F(x) is not a monotonically
decreasing function ofx, but has a bump between the inertial and dissipation ranges. Asx

increases from zero to infinity, firstF(x) increases fromF(0) = 1 to its maximum value
at the bump centre and then decreases exponentially to zero. Numerical simulations of
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Figure 3. The ESS scaling exponentS2 againstKo of the simple model equation (7) forn = 1,
2 and∞ (full curve); Pao’s formula (open circles).

isotropic turbulence and experiments [12, 13] confirm the existence of the bump. We have
four adjustable parametersB, m, C andn in the bump model (9), but only three of them are
independent due to the constraint (6) whileKo is given. The following two typical cases
have been studied in [11]

Ko = 1.2 m = 2/3 C = 5.4 n = 4/3 (10a)

Ko = 1.2 m = 1 C = 6.1 n = 1 (10b)

andB is determined by the constraint (6). As shown in Qian and Gao [11], equations (10a)
and (10b) give nearly the same 1D energy spectrum in the rangek/kd < 0.5 (or r/η > 2),
and are in agreement with the experimental 1D spectrum. Similarly to (7), the ESS scaling
exponentS2 of the bump model (9) can be calculated by using equations (1), (2) and (5). The
ESS scaling exponentS2 of the bump model (9) is given in figure 4 for(m, n) = (2/3, 4/3)
and figure 5 for(m, n) = (1, 1), and is also greater than the real inertial range scaling
exponentζ2 = 2/3. S2 increases asKo increases. Other choices of (m, n) give similar
results. Experiments and numerical simulations [13] show that the parameterC is between
5 and 9 whilen = 1.

The second bump model is for the 1D energy spectrumE1(k). According to the
experimental 1D spectra ofRλ ranging from 130–13 000, She and Jackson proposed the
model [14]

E1(k)/E1(kp) = (k/kp)−5/3f1(k/kp) (11a)

f1(x)/f1(0) = (1+ βx2/3) exp(−µx) β = 0.8. (11b)

Herekp is the maximum dissipation wavenumber, andµ is determined by the requirement
that k2E1(k) attains its maximum atk = kp. The She–Jackson model (11) is a special case
of the 1D bump model

E1(k) = (18/55)Koε2/3k−5/3F1(k/kp) (12a)

F1(x) = (1+ B1x
m) exp(−C1x

n). (12b)
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Figure 4. The ESS scaling exponentS2 againstC of the 3D bump model equation (9) for
Ko = 1.5, 1.2 and 1.0 whilem = 2/3 andn = 4/3 (full curve); equation (10a) (open circles).

Figure 5. The ESS scaling exponentS2 againstC of the 3D bump model equation (9) for
Ko = 1.5, 1.2 and 1.0 whilem = 1 andn = 1 (full curve); equation (10b) (open circles).

From (12) and the energy dissipation relationship, we have

(54/11)Ko
∫ ∞

0
x1/3F1(x) dx = 1. (12c)

Whenm = 2/3, n = 1, B1 = 0.8(kd/kp)2/3 andC1 = µ(kd/kp), (12) becomes (11), and
(12c) becomes (see Qian (1996) [10])

18.3Ko = (kd/kp)4/3.
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Figure 6. S2 againstC of the 1D bump model equation (12) forKo = 1.5, 1.2 and 1.0 while
m = 2/3 andn = 1 (full curve); She–Jackson formula equation (11) (open circles).

Figure 7. DLL (r) against−DLLL (r) over the ESS range 4< r/η < 103 for She–Jackson
formula equation (11),Ko = 1.5 (open circles); least-squares fit (full curve).

The ESS scaling exponentS2 of the 1D bump model, obtained by using (12), (3) and (1), is
given in figure 6, and is also greater than the real inertial range scaling exponentζ2 = 2/3.
For illustration, the log–log plot ofDLL (r) against−DLLL (r) over the ESS range for the
She–Jackson model (11) is given in figure 7, and an approximate relative scaling law is
observed over the ESS range 4< r/η < 103. However, its local slopeSL shown in figure 8
has a remarkable bump in the range.
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Figure 8. The local slopeSL againstr/η of She–Jackson formula equation (11),Ko = 1.5.

The third bump model is that studied by Qian [2] and is

F(x) = (1+ Bxαg) exp(−Cxβ) (13a)

g = [1+ C1Z + C2Z
2+ · · · + CmZm]2 Z = xγ (13b)

which is an improvement on the first bump model (9). Under the constraint (6), the
parametersB, α, C, β, C1, C2, . . . , Cm, and γ are adjusted to minimize the equation
error of the spectral form of the von Karman–Howarth equation. The minimization is made
for m = 5 in [2] for three typical values ofKo, and the equation error is less than 0.002.
By equations (1), (2), (5) and (13), the result of [2] is adopted here to calculate the ESS
scaling exponentS2, which is given in table 1 and is also greater than the real inertial range
scaling exponentζ2 = 2/3. Figure 9 shows the log–log plot ofDLL (r) against−DLLL (r)

over the ESS range 4< r/η < 103 for the third bump model (13) whileKo = 1.2, and an
approximate relative scaling law is clearly observed. Its local slopeSL is shown in figure 10
and has a remarkable bump in the ESS range, hence the relative scaling law is not valid in
a strict sense.

Table 1. ESS scaling exponentS2 and inertial range scaling exponentζ2.

S2

Model Ko = 1.2 Ko = 1.5 Ko = 1.8 ζ2

(13) 0.710 0.728 0.739 2/3
(14) 0.707 0.708 0.709 2/3
(15) 0.725 0.725 0.724 0.7
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Figure 9. DLL (r) against−DLLL (r) over the ESS range 4< r/η < 103 for the third bump
model equation (13),Ko = 1.2, and equation (10a) of [2] is used (open circles); least-squares
fit (full curve).

Figure 10. The local slopeSL againstr/η of the third bump model equation (13),Ko = 1.2,
and equation (10a) of [2] is used.

4. Proof for Batchelor’s model of the structure function

At this point, one might argue that the conclusion from section 3 is valid in the case of
normal scaling whereζ2 = 2/3, but might not be valid in the case of anomalous scaling. In
this section, we show that the same conclusion is valid for the case of anomalous scaling
whereζ2 = 0.7.
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Figure 11. DLL (r) against−DLLL (r) of Batchelor’s model equation (14) for the case of
anomalous scalingζ2 = 0.7, Ko = 1.5 (open circles); least-squares fit (full curve).

The experimental data of the second-order structure function can be fitted by the
Batchelor interpolation formula [1], its quality is better in the isotropic case ofD(r) than
in the longitudinal case ofDLL (r) [7]. The Batchelor interpolation formula forD(r) is ([7]
and references therein)

D(r)/(νε)1/2 = (x2/3)/[1+ (3Ck)−3/2x2](1−ζ2/2) x = r/η (14a)

whereCk is a dimensional constant related to the Kolmogorov constantKo

Ck = (9/5)0(1/3)Ko (14b)

and 0(n) is the Gamma function. The longitudinalDLL (r) is calculated by substituting
(14) into (4), thenDLLL (r) is determined by the Kolmogorov equation (1) and finally the
ESS scaling exponentS2 is obtained by the ESS method. The ESS scaling exponents of
Batchelor’s model (14) for both anomalous scaling (ζ2 = 0.7) and normal scaling (ζ2 = 2/3)
are given in table 1, and are all greater than the real inertial range scaling exponentζ2.
Figure 11 shows the log–log plot ofDLL (r) against−DLLL (r) of the Batchelor model (14)
for the case of anomalous scaling,ζ2 = 0.7, whenKo = 1.5, and its local slopeSL is
given in figure 12. Asr/η increases, the local slopeSL reaches its maximum in the range
10 < r/η < 102, and then has a slight minimum in the range 102 < r/η < 103, finally
approaching the inertial range scaling exponentζ2 whenr/η > 103. An approximate relative
scaling law is clearly observed over the ESS range in figure 11. However, the local slope
SL shown in figure 12 is not constant in the ESS range, so that the relative scaling law is
not valid in a strict sense. The situation of normal scaling (ζ2 = 2/3) of (14) is similar
to figures 9 and 10, and will not be shown here. The energy spectrum of the Batchelor
model (14) has a bump between the inertial range and the dissipation range; therefore, from
the point of view of the spectral dynamics, the Batchelor model (14) is also a bump model,
the fourth bump model studied in this paper. When Batchelor’s interpolation formula is
used forDLL (r) instead ofD(r), a similar result is obtained.
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Figure 12. The local slopeSL againstr/η of Batchelor’s model equation (14) for the case of
anomalous scalingζ2 = 0.7, Ko = 1.5.

5. Discussion

By using the Kolmogorov equation (1) and five typical models of the second-order statistical
moments (energy spectrum and the second-order structure function), we have studied the
relative scaling ofDLL (r) against−DLLL (r) following the ESS method. By adjusting
the relevant parameters (for example,n, Ko, C andC1) of these models in a wide range
compatible with experimental data, these models can cover various possibilities. All models
predict that the local slopeSL has a remarkable bump in the ESS range and that the ESS
scaling exponentS2 is greater than the real inertial range scaling exponentζ2, although
different models predict different size and skirt of the bump.

In the log–log plot ofDLL (r) against−DLLL (r), as shown in figures 1, 7, 9 and 11, an
approximate relative scaling law is observed over the ESS range 4< r/η < 103 adopted by
Benzi et al [3] while they obtainS2 = 0.7. However, as shown in figures 2, 8, 10 and 12,
the local slopeSL is not constant and has a remarkable bump in the range 4< r/η < 103,
so the relative scaling law is not valid in a strict sense. As a consequence, the ESS scaling
exponentS2 is greater than the real inertial range scaling exponentζ2 for both normal scaling
(ζ2 = 2/3) and anomalous scaling (ζ2 = 0.7), i.e.S2 > 0.7 whenζ2 = 2/3 andS2 > 0.72
when ζ2 = 0.7. The experimental and numerical resultsS2 = 0.7 have previously been
interpreted as clear evidence of anomalous scaling (ζ2 = 0.7) of DLL (r) based upon the
assumption thatζ2 = S2. In contrast, our results show that the dataS2 = 0.7 actually favour
the Kolmogorov 2/3 law (ζ2 = 2/3) rather than anomalous scaling (ζ2 = 0.7).
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